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Purpose and aim

To enhance the accuracy and intelligence of AgriSenze solution in monitoring soil over-
fertilization and under-fertilization, it is imperative to supplement the solution with additional
big agricultural data. Despite the growing volume of agricultural data collected by various
stakeholders, making practical use of this "big data" requires a unified interface that can
access multiple data sources. This research is centered around creating such an interface,
aiming to collect, aggregate, mine, and derive meaningful insights from diverse agricultural
parameters. The objective is to enhance AgriSenze's decision-making capabilities. The
research involves the development of web APIs for gathering agricultural data from disparate
sources and developing a machine learning algorithms to forecast soil temperature, which
significantly affects nitrate levels, at varying depths ranging from 2cm to 100cm.

Results

The machine learning based data
analytics and feature engineering
showed that the average air
temperature (in °C), evaporation (in
mm), snow depth (in cm), month and
day can be used to predict the soil
temperature (in °C) at different depths
with good MAE performance as
indicated on the figure to right for soil

temperature at 100cm.

Veralia Gabriela Sanchez
veralia.g.sanchez@usn.no

Actual Soil Temperature at 100cm (0°C)

Actual Soil Temperature at 100cm (0°C)

Soil Temperature ML Regression Models Evaluation
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