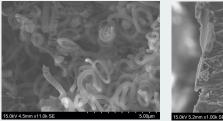


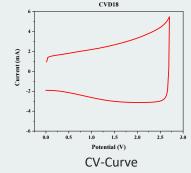
Electroless Ni-Plating Deposited Ni CVD at 500° on 70 µm Al foil

CV and ESR measurement



Fabricated Electrode with CNTs

Purpose and aim


This study optimizes Nickel plating for iCL-CNT electrode synthesis on etched aluminum, enhancing supercapacitor performance. Electroless plating enables cost-effective mass production, harnessing CNTs' high surface area for improved charge storage. These advancements address the need for rapid charging, longer lifespan, and high power density in supercapacitors.

Results, important findings

SEM image of CNT

SEM image of Ni-Particle

Nickel Plating Process Development for Supercapacitor Electrode Fabrication

The measured electrode capacitance is **805 mF/cm²**, and the measured cell capacitance is 382 mF.

Shamim Ahmad ahmadshamim827@gmail.com Masters in Micro and Nanosystem Technology Supervisor: Pai Lu, Co-Supervisors: Raghunandan Ummethala and Nayereh Soltani Eamil: Pai.Lu@usn.no; raghu.ummethala@nanocaps.no; nayereh.soltani@nanocaps.no

External partner:

